If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-24d+23=0
a = 1; b = -24; c = +23;
Δ = b2-4ac
Δ = -242-4·1·23
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-22}{2*1}=\frac{2}{2} =1 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+22}{2*1}=\frac{46}{2} =23 $
| 11=x+29 | | 66=-6x | | 2x-4=x-9 | | q,-6/0,6=-6 | | 8x+3-6x=21 | | -5x2+15x-10=0 | | 34-1/2p=1/4p-1 | | 8x-80=40 | | 2x-4+12x-3=0 | | 3y-5=72 | | 2(x-4)=3+2x | | (-0.4x^2+50x)-(1.6x^2+12x+68)=0 | | -72+9k=9 | | 2k=7+3 | | 2k=5+3 | | 23-(12x-16)=5(4x-5) | | 9a+4-2a=39 | | 3u-24=-6 | | (x+4)(x-6)=11 | | 2y=8y*8 | | 2h-1=3h+6 | | 7(x+1)=2x57 | | 3(3+x)-(2+x)=3 | | 142=2-y | | 5(x-1)-(2x1)=3-x | | 2x-50=22 | | 8-8p=8 | | 36+8k=0 | | 23x–16=14–17x | | 7(x+1)=2x+27 | | 100x^2+10x=120 | | -4c+40=12 |